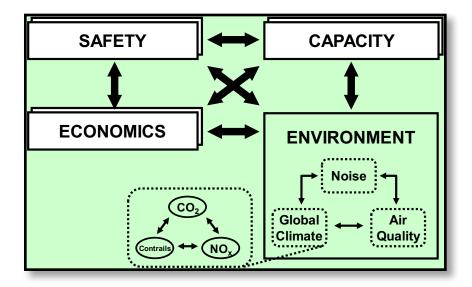


Environmental Negotiation Frameworks for Multi-Stakeholder Air Transportation Systems

Joint University Program


Luke Jensen ljensen@mit.edu

August 1, 2016

Motivation: System Design Tradeoffs

- Several important tradeoffs need to be considered for the design and optimization of air transportation systems
 - System objectives
 - Safety, cost, capacity
 - Environmental
 - Stakeholder valuation and prioritization
 - Monetized cost/benefit
 - Non-monetized welfare and equity
 - Consideration for disaggregate local and global costs and benefits

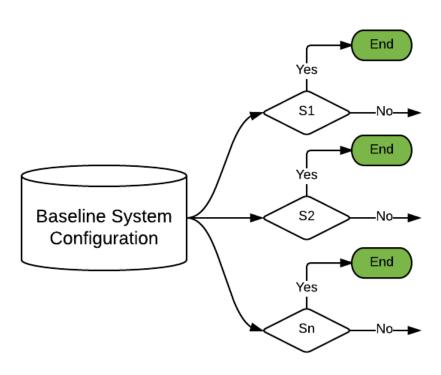
Accounting for Intangibles

- Air transportation environmental impact involves many externalities
 - Cost or benefit that affects a party who did not choose to incur that cost or benefit
- Disaggregate cost and benefit leads to inequity
- Emotional response, social welfare, and questions of appropriate timescale

- Potential solutions
 - Evaluation away from Pareto frontier
 - 2. Democratic input processes
 - 3. Fast, transparent, and parametric modeling

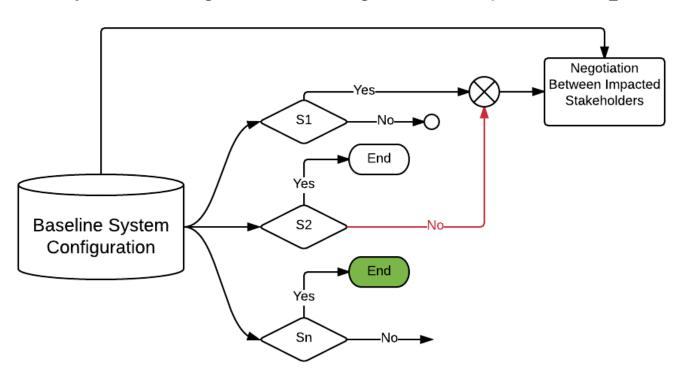
Optimization and Negotiation in Environmental Problems

- Key challenges of noise problem (and similar multistakeholder environmental impact problems):
 - No definitive formulation
 - No end point (stopping rule)
 - No enumerable set of solutions
 - "Wicked Problem" in optimization terminology
- Such problems present challenges for typical optimization frameworks
 - What is the cost function?
 - Different for each stakeholder
 - Unknown, dependent, or stochastic to most stakeholders
 - Which stakeholder (or weighted-average of stakeholders) drives the optimizer?
- 3) Multi-stakeholder environmental tradeoff problems must be formulated as technical negotiations with mixed-fluency audiences


Problem Definition

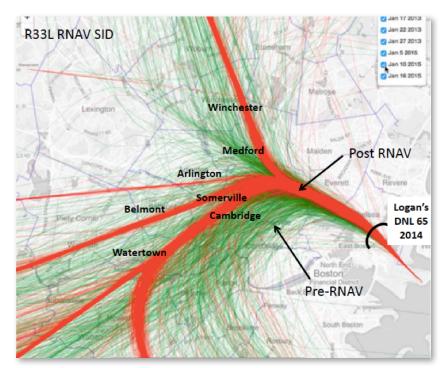
- Several key challenges arise from an analysis standpoint:
 - 1. Which variables should be considered?
 - 2. Which stakeholders should be involved in the negotiation process?
 - 3. How should information be presented and visualized for mixed-fluency stakeholders to effectively evaluate design trade spaces?

Architecture


- Baseline system configuration is presented to all stakeholders S_n
- Under scenario where all stakeholders are in agreement with configuration, no further negotiation is necessary

Architecture

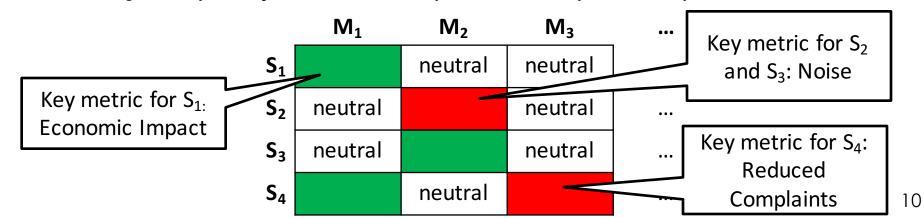
- Under scenario where one or more stakeholders is dissatisfied with status quo, negotiation (and potentially re-optimization) may be initiated
- Scenario:
 - S₁ proposes a system configuration change, triggering re-evaluation by all stakeholders
 - Proposed system configuration change not acceptable to S₂


Negotiation Process

- Stakeholders involved with negotiation:
 - Proponent of system change
 - All stakeholders who do not approve of system change
 - Neutral (observer) stakeholders
- Objective: translate problem to technical negotiation using relevant metrics
- Identification of relevant negotiation metrics M_n:
 - Metrics 1 through m: quantities of interest that motivated the proposed change (desirable outcomes for S₁)
 - Metrics m+1 through n: "pain point" quantities for opposing stakeholders (undesirable outcomes for S₂)
- Quantification and visualization of metrics M₁ through M_n becomes key component of negotiation
 - May be continuous or discrete

Noise Implications from PBN

- Flight track concentration has generated increased noise complaints
- Strong community and congressional pressure
 - Fundamental challenge for NextGen Implementation
- Current analysis tools may not capture potential benefits from RNAV/RNP implementation
 - Analysis to be conducted under ASCENT Project 44: Noise Reduction Analysis of Advanced Operational Procedures

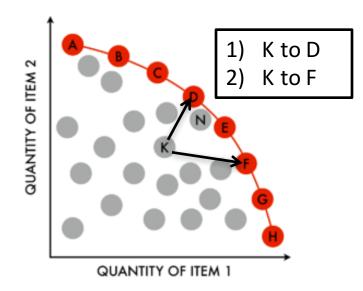


Simple Case: Negotiation Matrices

- Impact matrix for policy with following stakeholders:
 - S₁: Airline that benefits from proposed change
 - S₂: Community member who opposes proposed change
 - S₃: Community member who supports proposed change
 - S₄: Airport operator (not directly incentivized to change)
- Impact matrix used to guide negotiation and consensus process
 - M₁: Notional economic/technical benefit to Airline S₁
 - M₂: Increased overflight frequency over neighborhood of S₂
 - M₃: Frequency of noise complaints to airport and politicians

Narrowed Negotiation Objectives

- High dimensionality of the problem is reduced by focusing only on key "pain point" variables
 - Best-case: benefit variable S₁ held constant (i.e. economic or throughput improvement for airlines), impact variables S₂ improved by moving to Pareto frontier
- Role of technical analyst:
 - Use set of discrete (i.e. runway use) or continuous (i.e. track dispersion or offset) techniques to reduce impact
 - Identifying feasible solutions on the Pareto frontier for variable P₁
 - Providing sensitivity estimates for impact variables P_n as benefits level is relaxed


Selecting a Preferred Solution

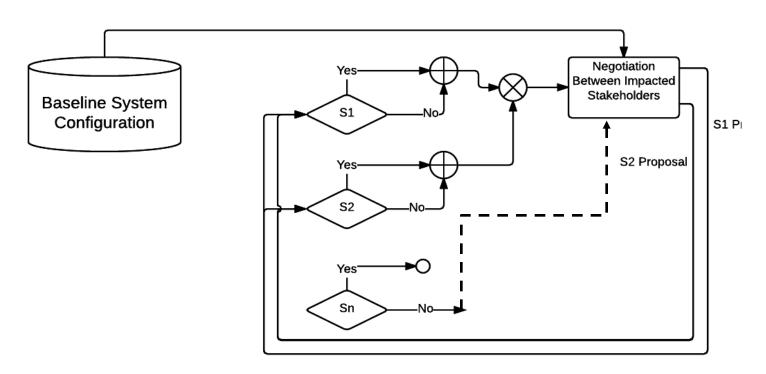
1: Pareto efficiency:

– Does a solution improve valuation for at least one stakeholder without reducing valuation for another?

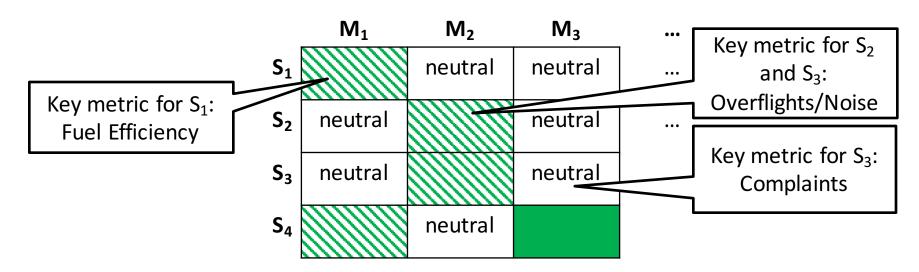
2: Kaldor-Hicks Criterion:

- Does a solution improve valuation for all stakeholders taken together (net societal benefit)?
- Cornerstone of traditional costbenefit analysis
- Does not guarantee that all stakeholders realize benefit or compensation (inequitable)

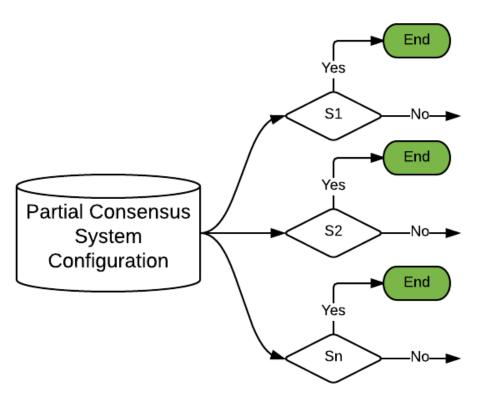
Notional valuation of two outcomes

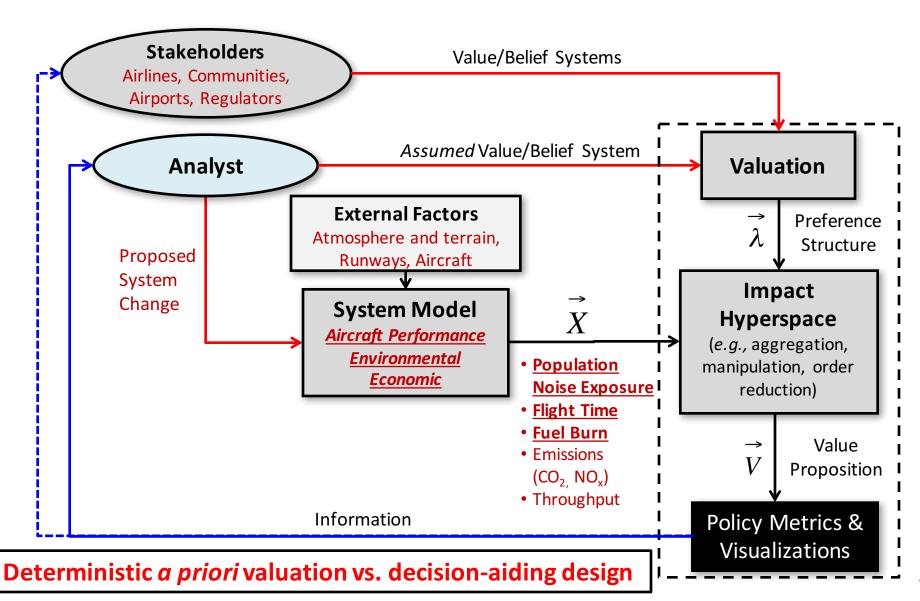

Generalizes to n-dimensions

Negotiation Architecture


- S₁ and S₂ generate proposed changes accounting for sensitivity of all key parameters, re-submit for evaluation by other involved parties
- Process continues until S₁ and S₂ reach consensus on key variables
- All stakeholder have visibility over negotiation (and option to participate)

Negotiation Matrices


- Result: consensus solution for S₁ (airline) and S₂ (impacted community member)
 - Negotiated solution results in higher fuel burn, lower noise for S₂, higher noise for S₃
 - Consensus (perception of equity) reduces complaint rate for S₄
- Potential complications: higher noise for different community member S₄


Negotiation Architecture: Multi-Stakeholder Evaluation

- Re-evaluate proposed solution with all stakeholders not involved with prior negotiation
- Dissenting stakeholders will trigger further evaluation or negotiation

Valuation Framework for Procedure Evaluation

Next Steps

- Develop graphical and data presentation formats to assist negotiation process in PBN procedure development
 - Baseline work underway to support rapid environmental modeling project
- Identify sample problem to demonstrate negotiation framework
 - Baseline configuration
 - Procedural objectives
- Generalize decision processes from PBN sample problem to air transportation environmental policy